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Boundedness of the velocity derivative flatness factor in a turbulent plane jet
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Abstract

This paper focuses on the statistics of normalized fourth-order
moment of the longitudinal velocity derivative, ∂u/∂x, i.e. the

flatness factor S4 = (∂u/∂x)4/(∂u/∂x)22
on the axis of a plane

jet over a range of Taylor microscale Reynolds number vary-
ing between Rλ ' 500 and 1100. The aim is to determine the
dependence of S4 on Rλ. Different tests on the jet axis show
that local isotropy is closely satisfied, allowing the use of εiso,
the locally isotropic form of the mean turbulent kinetic energy
dissipation rate ε.

The measurements show that S4 remains approximately con-
stant when Rλ ≥ 500. This is inconsistent S4 ∼ Rα

λ
, where α

is a small positive number, as predicted by various internal in-
termittency models. The constancy of S4 is in full agreement
with the relatively recent results (6) showing that S3, the skew-
ness of ∂u/∂x, also tends to a constant when Rλ increases. The
present results conform with the original similarity hypotheses
of Kolmogorov (1).

Introduction

There is no doubt that the first two similarity hypotheses of
Kolmogorov(1; 3), widely known as K41, and Kolmogorov’s
(1962) refined similarity hypothesis (2), or K62 - the latter was
introduced to account for the so-called ”internal intermittency”
-, have had a huge impact on turbulence research. Various quan-
tities, such as energy spectra and velocity structure functions,
can be used to test either K41 or K62.

According to the K41 first hypothesis, these quantities adopt
particular universal forms when the Taylor microscale Reynolds
number, Rλ (=u′λ/ν, where λ is the longitudinal Taylor mi-
croscale u′/(∂u/∂x)′ and a prime denotes a rms value) is
very large. Interestingly, the Kolmogorov-normalized one-
dimensional velocity spectra φ∗u(k

∗
1) (the asterisk denotes nor-

malization by the Kolmogorov length scale, η = (ν3/ε)1/4,
where ν is the kinematic viscosity of the fluid; ε is the mean
turbulent energy dissipation rate; the overline denotes time av-
eraging, and/or Kolmogorov velocity scale, uK = (νε)1/4) col-
lapse in the high wavenumber region even when Rλ is as small
as about 40 (4; 5).

In terms of the velocity structure functions, a major outcome of
K41 is the prediction

(δu∗)n = fun(r∗), (1)

where the velocity increment δu = u(x+ r)−u(x) between two
points separated by a distance r along x, (hereafter x is taken in
the flow direction); fun is a universal function when normalized
by η and/or uK for each value of n. When r→0, expression (1)
yields the normalized moments of streamwise velocity deriva-

tives, i.e.

Sn =
(∂u/∂x)n

(∂u/∂x)2n/2
, (2)

which, according to K41, should be constant for each value of
n at large Rλ.

Following (7) and (8), many studies have focused on the evolu-
tion of Sn with Rλ with the view to testing K41 and K62. The
majority of the work supports the argument that |Sn| (n ≥ 3)
increases continuously with Rλ, viz.

|Sn| ∼ Rα(n)
λ

(α > 0), (3)

e.g. (7; 8; 9; 10; 11). However, it appears now that not only the
small-scale statistics are affected by Rλ (this is the so-call Finite
Reynolds number effect, or FRN effect), when the latter is not
large enough (12), but the approach towards an asymptotic state
as Rλ increases differs from flow to flow (13; 6). These results
indicate that the Rλ dependence on Sn should be revisited. And
in particular, it should be assessed separately in each flow. Such
attempts have been already initiated (6; 13; 14; 15). The latter
authors derived the locally isotropic form of the transport equa-
tion for ε, directly from the Navier-Stokes equations, in various
turbulent flows, i.e. grid turbulence, along the axis in the self-
preserving far-field of a round jet, along the centreline of a fully
developed channel flow and a far-wake of a circular cylinder.
They showed that, in each flow, the transport equation for ε can
be expressed in the form

S3 +2
G
Rλ

=
C
Rλ

, (4)

where G is the non-dimensional enstrophy destruction coeffi-
cient of ε defined by

G = u2 (∂
2u/∂x2)2

(∂u/∂x)22 . (5)

In Eq. (4), analytical expressions for C differ from flow to flow.
For example, in grid turbulence, C is equal to 90

7(1+2R)

( n+1
n

)
with R = v2/u2 and n is the power-law decay exponent for the
longitudinal velocity variance, viz. u2 ∼ x−n (6; 13) whereas,
along the axis in the self-preserving far-field of a round jet, C =

90
7(2+R) (6; 13).

References (6; 14; 15) showed that since 2G/Rλ is found to be
very nearly constant for Rλ ≥ 70∼ 100, S3 approaches a univer-
sal constant, with a value of about 0.53, when Rλ is sufficiently
large, but the way this constant is approached is flow dependent.
In general, Rλ only needs to exceed about 300 for S3 to become
universal for all flows considered by Refs. (6; 14; 15). For Eq.
(1), Pearson and Antonia (16) showed that (δu∗)2 collapses in
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Figure 1: Ratios between the isotropic predictions
and measured second- ((δv)2

iso/(δv)2
exp) and third-

((δu)(δv)2
iso/(δu)(δv)2

exp) order (black) structure func-
tions in the dissipation range. 5, Rλ = 1067; q, Rλ = 550.
Solid line indicates the isotropic ratio of 1. Dashed lines
indicate a departure of 20% from the isotropic value of one.

the dissipative range over a large range of Rλ (40 < Rλ < 4250)
and Antonia et al (6) showed that Sδu, the skewness of δu, viz.

Sδu = (δu)3/(δu)23/2
also becomes universal in the dissipative

range when Rλ is sufficiently large. The available evidence con-
firmed the constancy of Eq. (2) (K41) only for n= 3 and the uni-
versality of (1) (K41) in the dissipative range for n = 2,3. The
objective of this paper is to assess the Rλ dependence of Eqs.
(1) and (2) for n = 2− 4 in the dissipative range with the data
in one flow (on the plane jet axis) over a relatively large range
of Rλ (500 to 1100). The reason for choosing one flow, with a
given initial condition, is that it allows the Reynolds number ef-
fect to be examined with minimal ambiguity. Naturally, further
testing will be needed, in due course, in other flows and similar
Rλ range.

Local isotropy

Before discussing the results, we first briefly assess local
isotropy in this flow using the data of (17) and the following
methods.

(1) Following (18), the well-known isotropic relation between
second-order structure functions of longitudinal and transverse
velocity components is given by

(δv)2
iso =

(
1+

r
2

d
dr

)
(δu)2. (6)

The isotropic relation between third-order structure functions is
given by (18)

(δu)(δv)2
iso =

(
1
6

d
dr

r(δu)3
)
. (7)

Figure 1 shows the ratios between calculated and
measured second- ((δv)2

iso/(δv)2
exp) and third-

((δu)(δv)2
iso/(δu)(δv)2

exp) order structure functions at
Rλ=550 and 1067 respectively. For both the second- and third-
order structure functions, the departure from local isotropy
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Figure 2: Dependence of Sn (n = 3− 4) on Rλ on the axis of
the plane jet. Green symbols, (23); black symbols, (16) (note
that only the data for fc/ fK > 0.8 are shown); blue symbols,
(17) (each data point is an average of the two single hot-wire
data points in the vorticity probe measurements). The horizon-
tal dashed lines indicate the mean value of each of the plotted
quantities.

appears to be relatively small in the dissipation range (r∗ ≤ 60),
the maximum departure being about 20%.

(2) A few statistics of ωz(≡ ∂v/∂x−∂u/∂y) have been reported
in (17). We simply note here that for local isotropy, the mean
square value of ω2

z , i.e. (∂v/∂x)2+(∂u/∂y)2−2(∂v/∂x)(∂u/∂y)

should be equal to 5(∂u/∂y)2. The average measured value of

ω2
z/(∂u/∂y)2 is 4.5, also indicating a small (10%) departure

from local isotropy. (3) In a far-wake of a circular cylinder,
(19; 20) , who measured all components of ε, observed a dif-
ference of about 30% between ε and εiso (=15ν(∂u/∂x)2) and
showed that only ε provided a satisfactory closure of the one-
point energy budget. In this flow, (21; 15) applied the spectral
chart method of (22) to estimate ε and found it to be very close
to the true value of ε̄. The spectral chart method of (22) has
also been applied to the present plane jet spectra of u to obtain
ε̄. The results show that the estimates of ε̄ are very close to εiso,
which allows us to use εiso for convenience.

Results

Figure 2 shows the variations of S3 and S4 with Rλ (Eq. (2))
on the axis of a plane jet. Detailed descriptions of the measure-
ments in the plane jet are given in Refs. (23; 16; 17). Note that
for the data of Pearson and Antonia (16), only those for which
fc/ fK > 0.8, where fc is the low-pass filter cut-off frequency
and fK is the Kolmogorov frequency, are shown since an inad-
equate time resolution tends to underestimate S3 (14). It can be
seen from Fig. 2 that S3 and S4 are practically constant (by def-
inition, S2 = 1) over a range of Rλ (500 < Rλ < 1100) for these
data sets, showing that the FRN effect is practically negligible
for this range of Rλ. Antonia et al (24) showed that the mag-
nitudes of S3 and S4 are 0.43 and 5.8 respectively on the axis
of the plane jet at Rλ = 160; these are smaller than the values
shown in Fig. 2 (0.54 and 9.8 respectively) suggesting that are
likely to be influenced by the FRN effect.

We now focus on Eq. (1) up to n = 4 on the axis of a plane jet
with the data of (17), bearing in mind that when r→ 0 we get
Sn. Figure 3 shows (δu∗)n (n = 2− 4) for the plane jet data at
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Figure 3: Kolmogorov-normalized structure function (δu∗)n for
n = 2−4 along the axis of the plane jet at Rλ=550 (black), 696
(blue), 826 (red), 914 (pink), and 1067 (green) respectively(17).
For clarity, only the data from one of the single hot-wires in
vorticity probe are shown). The blue dashed lines correspond
to 15−n/2Snrn (Sn is the mean values shown in Fig. 2), i.e.
approximate expression of Eq. (1) at small r∗.

Rλ=550, 696, 826, 914, and 1067 respectively. We used εiso to
estimate η and uK since local isotropy is satisfied adequately in
this flow. The blue dashed lines correspond to 15−n/2Snrn (the
values of Sn correspond to the averaged values shown in Fig.
2), i.e. the approximate form of Eq. (1) at small r∗. There is a
relatively good collapse for all the structure functions at small
r∗. Whilst the collapse for n = 2, in good agreement with the
observations of (16), may be criticised as being ”somewhat con-
trived” since εiso is used to generate η and uK , the previous dis-
cussion concerning the approximation εiso ≈ ε goes some way
towards allaying this criticism. Further, the collapse for n > 2,
consistent with the trend in Fig. 2, is reasonably convincing at
small r∗. For each value of n, the distributions collapse reason-
ably well at small r∗ in compliance with Kolmogorov scaling.
(δu∗)2 is replotted in a separate figure (Fig. 4) to provide a com-
parison with grid turbulence (Rλ=27-100), where local isotropy
is satisfied adequately and ε, as inferred from the energy bud-
get, is in close agreement with εiso (a detailed description of the
grid turbulence measurements is given in (25)). It can be seen
from this figure that (δu∗)2 indeed collapses reasonably well for
r∗ < 10 in both flows and follows the blue line at small r∗.

Theoretical considerations for the fourth-order moment

The constancy of S3 at large Rλ in various flows has a solid an-
alytical underpinning (6; 14; 15). Similarly, this section will
focus primarily on the transport equations for the fourth-order
moment in order to provide some analytical support for the in-
dependence of the Reynolds number for S4 and (δu∗)4 in Figs. 2
and 3. According to (28; 29; 16), the pressure structure function
in locally homogeneous and isotropic turbulence can be written
solely in terms of fourth-order velocity structure functions as

Dp(r) =− 1
3 D1111(r)+ 4

3 r2 ∫ ∞

r y−3[D1111(y)
+Dχχχχ(y)−6D11γγ(y)]dy
4
3
∫ r

0 y−1[Dχχχχ(y)−3D11γγ(y)]dy
(8)

where Dp(r) is the pressure structure function, D1111(r)

(=(δu)4) is the fourth-order longitudinal velocity structure func-
tion, χ and γ stand for 2 or 3. The only assumption needed in
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Figure 4: (δu∗)2 in plane jet (black curves). Also shown are
the data (red curves) in grid turbulence (Rλ=27-100); detailed
descriptions of the measurements are given in (25). The arrow
points to the direction of increasing Rλ. The blue dashed line
indicates 1/15r∗2.

deriving Eq. (8) is that turbulence is locally homogeneous and
isotropic.

When r→0, Eq. (8) can be rewritten as follows (28; 29)

1
ρ2

(
∂p
∂x

)2
= 4

3
∫

∞

0 r−3[D1111(r)
+Dχχχχ(r)−6D11γγ(r)]dr.

(9)

With Kolmogorov scaling, Eq. (9) can be further recast as(
∂p∗
∂x∗

)2
= 4

3
∫

∞

0 r∗−3[D∗1111(r
∗)

+D∗χχχχ(r
∗)−6D∗11γγ

(r∗)]dr∗.
(10)

Because of the presence of r−3 in the integrands of (9) or (10),
the dominant contributions from the integrals come from the
dissipative range (r∗ < 30) (29). As shown in Fig. 3, the range
of r∗ over which (δu∗)4 collapses should increase as Rλ in-

creases. The independence of (δu∗)4 in the dissipative range
(Fig. 3) implies that the right side of (9) should approach a
constant when Rλ is sufficiently large.

We now focus on the left side of Eq. (10). Several attempts have
been made to estimate this term. For example, using the joint-
Gaussianity approximation, Batchelor (30) obtained a value of
about 1.3 for this term. A similar value (≈ 1.0) was obtained
by Heisenberg (31). Pearson and Antonia (16) estimated this
term in various flows over a large range of Rλ (40 < Rλ < 1077)
and showed that it approaches a constant when Rλ ≈ 500. Us-
ing the eddy-damped quasi-normal Markovian approximation,
Meldi and Sagaut (33) also showed that the left side of Eq. (10)
should approach a constant in freely decaying isotropic turbu-
lence when Rλ is sufficiently large. It is not yet clear if the DNS
values for this term will keep increasing with Rλ (e.g. (32)) or
whether they will approach a constant as implied by the inde-
pendence on Rλ of (δu∗)4 at small r∗ (Fig. 3).

Conclusions

Relatively high Reynolds number data on the axis of a plane jet
are analysed with the view to assess Reynolds number depen-
dence of both the skewness (S3) and the flatness (S4) factors of



the longitudinal velocity gradient. The data show strong evi-
dence that both S3 and S4 are approximately constant when Rλ

exceeds 500. Further, it is shown that Eq. (1) with n = 2, 3 and
4, is well verified in the dissipative range, which is consistent
with the constancy of S3 and S4. Evidently, it would be desir-
able to carry out a similar analysis in regions away from the
jet axis, and also examine the behaviour of S3 and S4 in other
turbulent flows.
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